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INTRODUCTION

The original planning and experimentation from which these programs
evolved was done in a Math/Physics seminar at Hanover High School in the
Spring of 1969. We wished to explore and understand the physical forces
involved in orbital flight at a depth for which no secondary school literature
appeared to exist. The DTSS* presented an interesting opportunity for the
students to do actual constructive research using mathematical models and
computer simulations.

The mathematics is essentially that of a superior Algebra II course that
stresses Trigonometry and Analytic Geometry. A student's ability in these
areas may be sorely tried and perhaps extended if these programs and supporting
material are dissected and examined. Many problem solutions normally ob-
tainable only through the methods of calculus are found through computer
programs utilizing some interesting algorithms. The original questions asked
by the seminar students were non-trivial, and the resulting analyses were,
consequently, slightly more sophisticated than was expected. Despite this
creeping complexity, the questions that were answered at all were answered
with a substantial degree of integrity.

The physics represents an extension of the basic physics employed in
the excellent Holt, Rinehart (Sc Winston paperback series on space flight with
specific emphasis on "Mathematics of Space Flight", the most utilitarian of
these paperbacks. Obviously, the prograrris go beyond this introductory
material but may still be considered a linear extension of it. Vectors and
energy levels are the prime tools of kinetics analysis. At least one seminar
of a good physics course such as PSSC is heartily recommended as a pre-
requisite to this material although much of the necessary background is well
introduced by the paperback text.

The forces and energies studied have such a large magnitude and many
of the changes sought after are so minute that the computer cannot give the
accuracy of computation that some students would desire. However, the
numerical analyses yield data that is sufficient for most uses.

During the Spring of 1970, some Hanover students are planning to write
exercise sets around the present programs, and perhaps, some new programs
as well. These exercises will lie in three categories: (1) questions requiring
extensive knowledge of the given program and its accompanying Topic Outline
and also requiring many directed runs of the present program; (2) questions

* Dartmouth Time-Sharing System
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requiring minor re-writing of the program to present data from a different
point of view; and (3) compilation of tables to aid in analysis directed toward
writing new exploratory programs and requiring continuous and systematic
re-programming. These exercise sets may be available in a later edition of
this topic outline. The following program notes may help in creating ad hoc
exercises.

(1) Elliptic Orbits: This topic is a time analysis of closed orbits.
The time analysis is made possible through the use of a computer
algorithm that rather accurately replaces the commonly used
elliptic integrals. The laws of planetary motion may be studied
quite closely after minor substitutions are made in the program.
Keppler's laws, as one example, are directly observable on a
time plot.

(2) Rendezvous: The simplest form of the two ship rendezvous is solved
and the time function is used again to track the interception in
either tabular or graphic displays. The program is stripped to the
absolute minimum to emphasize "window" and relative orbital
constants. Obviously, a reversal of the ship roles in the program
leads to the Hohman transfer. The program as it stands gives a
clear picture of circular and elliptic orbits of the same magnitude.

(3) Orbital Transfer: This program computers the effect of adding any
energy vector to any orbit configuration at any point. The potential
of this program as yet is largely unexplored and its limitations and
weaknesses have not yet been fully identified. Suggested exercises
would include studies of orbital stability, relative influences of
the multiple variables, and of course, problems in rotation of
orbital axes. The advanced student may use an easy variation of
the program as a flight simulator in exchanging orbits.

Future developments will hopefully extend Rendezvous to include all manner
of orbits. This will, of course, require the most careful exploitation of
Orbital Transfer to control rotation and alignment of orbital axes.



I. ELLIPTIC ORBITS

REF: ELORB

Time analysis of closed orbits has been a subject of fascination to astro-
nomers, physicists, and mathematicians alike for some 300 years. Theoretically,
if the orbit is known, then the orbiting body's position is strictly a function of
time. Unfortunately for the untutored amateur or elementary student of orbital
mechanics this position plot as a function of time gives rise to some complicated
applied mathematics.

The advent of the high-speed computer offers an alternative to the elliptic
calculus developed by the giants of the 18th and 19th centuries to handle
"celestial mechanics." The ability of a computer to handle large numbers of
complex calculations in fractions of a second allows "back solving" of systems
of equations which, if solved in a straightforward manner, lie in the domain of
advanced mathematics.

Before examination of the actual equations from which the program is con-
structed, a look at the physical situation is convenient. In Figure 1 is shown
a typical elliptic orbit with Earth at its principle focus. A space ship is shown
at an instant of time along with the area which its radius vector has swept out.

Figure 1.

Area swept out
in k seconds



Since an orbit which is undisturbed by additions or subtractions of energy
has constants for its descriptive parameters, it is obvious that a few astronomical
observations will yield:

1. Closest approach to Earth

2. Furthest recession from Earth

From these data all other significant parameters may be calculated. From an
arbitrary zero time it seems as though after K seconds a given area is swept
out by the radius vector which is directly dependent on 9, the radius vector
angle.

Keppler established that the radius vector sweeps out equal areas in equal
times. If it were easily calculable, the area of an ellipse in terms of 9 would
be of immense aid since we could then directly relate t and 9. In Figure 2
such a calculation is established. The result is an integral which is included
in the text as a "given" equation but should be briefly examined at this point.

Figure 2. The Differential Triangular Area of an Ellipse

From Figure 2 the area of I AOB is 2 r.r.d9, and the integral (where r = cos9)
is

Ap L2 d9
a 2 a (1 + e cos9)2

which is a standard transcendental with a solution readily available from any
set of integral tables.

-4-
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In most mathematical texts the solution to the area problem is mani-
pulated so that t = f(9) which is, of course, the absolute inverse to what
is required, i.e. , 9 = f(t). It is precisely at this point that a secondary
school student with a computer can match the calculations of the more ad-
vanced student.

The program associated with the mathematical portion of this topic
outline can be set to report angular position (r,9) given any time interval. This
is accomplished by having the computer search for a 9 that will produce the
required time. The presentprogram is adjusted for 5 minute intervals with
an accuracy of .001 minutes, or 15 search sweeps, whichever occurs i;:st.
This avoids the inverse solution to the differential triangular area of the
ellipse which leads to elliptic integrals which would have to be solved for
each time plot.

When "approach" and "recession" distances are given to the computer in
response to its input interrogation, the program not only presents most of the
orbital data in tabular form but on command will track the orbiting object giving
position plots with velocities at 5 minute time intervals-.

As a consequence, any student with an elementary background in mathe-
matics who gain access to a time-shared computer, may study closed orbits
with their associated laws of physical behavior. The more serious student who
cares to pursue the mathematics of this physical behavior will find all the
equations necessary for further exploration and possible re-programming.

Objects in free fall around Earth fall in orbits which are mathematically
describably as conic sections. The principal focus is at Earth center. The
polar coordinate system is used to describe a ship's orbital position. The
reference axis is through Earth center on the orbital perigee. The ship's
position in an elliptic (as well as any other conic orbit) is then

L (El)
1 +e cos 9



Figure 3. Orbital Parameters (Elliptic Orbit)

A: Apogee
P: Perigee
L: Semi Latus Rectum
a: Semi Major Axis
b: Semi Minor Axis
ae: Semi Focal Length

r: Radius vector
9: Radius angle
e: Eccentricity

NOTE: Counterclockwise orbit is with Earth rotation and will be standard.

The distance parameters in terms of A, P are:

a = + P) /2 (E2)

e = (A P) /(A P) (E3)

L = a(1 - e2) (E4)

b = a 1 e2



The inertial period, Pe, of an elliptic orbit is

Pe = 21TR seconds (F6)
Gm

where Gm, the Earth gravitational constant is

Gm = 62747 nautical miles/second2.

The ship's velocity at any point in orbit is

v = N/Gm(2 - 1) nmps.
r a

Velocities at apogee and perigee will be

vp = /Gm (1 + e) nmps
A

vA = VGm (1 - e) nmps.

And the area swept out by the radius vector is

(E 7)

(E 8)

(E 9)

(E10)

A(r,9) = L2 e sin 9 2 Tan-1 ( 1 -e2 8) (Eli)
2 (e2-1) (1+e cos 9) (1 - e2)3/2 2

By Keppler's 2nd Law, the following relationship holds:

A(r,9) = t seconds (E12)
k

If (Ell) is solved for one complete revolution

Mr, 9) = Tr ab

and the following equalities may be established:

(E 13)

it ab = 217* a3 k (E14)
Gm

t = L2 IQ; e cos 9 + 2 Tan-1 ( 1 -e2 Tan.8) minutes
60bGm (e2-1) (1+e cos 9) (1-e2)3/2 2 (E15)

To directly solve (E15) for 9 in terms of t is 'evidently quite difficult, so the
time function is computed through a computer convergence or search program.

-7-



ELO RB 03/18/70 09:51

iHI S PROGRAM I S KEYED TO THE TOPIC OUTLINE 'ELLIPTI C
ORBITS' THROUGH THE REM COLUMN REFERENCES

CLOSEST APPROACH TO EARN? 150
FURTHEST RECESSI ON FROM EARTH? 9 50

CONSTANT PARAMETERS

SEMI MAJOR AXIS I S 3992
SEMI MINOR AXIS I S 39719 1
SEMI LATUS RECTUM I S 39 51.92
SEMI FOCAL LENGTH I S 400.
ECCEN TRI CI TY I S 0. 1002
IN ERTI AL PERIOD I S 105. 443
PERI GEE VELD Ci TY I S 1 578 2. 2
APOGEE VELOCI 1'Y I S 12907. 5

VARIABLE PARAMETERS

ELAPSED TIME RADI US ANGLE RAD' US V VELD CI TY

0
5
10
15
20
25
30
35

1.09863
18.8525
37.5403
55.9314
73.905
91.3733
108.292
124.706

E-2 3592.
3609 64
3661.04
3741.88
3845.11
3961.43
4080. 24
4191.02

15782.2
15711.9
15509.3
1519 6. 7
14807.8
1438 2. 3
13960. 5
13573.

40 140.68 428 4. 13264.2
45 156.281 4351 07 13041.7
50 171.661 438 6.8 4 129 24. 3
55 186.976 4388 38 12919 3
60 202.346 4355. 58 13026.9
65 217.936 4291.03 13240. 7
70 233.855 4200.15 13546.8
75 250.225 4090. 6 139 24. 4
80 267.111 3971.98 14344. 4
85 28 4. 535 3854.98 14771.2
90 302.465 3750.21 15164.9
95 320.812 3667.12 154E35.5
100 339.489 3612.86 15699 1

105 358.33 3592.14 15781 -6

TIME: 2.000 SEC

A-
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ELO RB

100 PRINT "THIS PROGRAM I S KEYED TO THE TOPIC OUTLINE 'ELLIPTIC"
110 PRINT "ORBITS' THROUGH THE REM COL UMN REFERENCES"
120 PRINT
130 PRINT "CLO SEST APPROACH TO EARTH";
140 INPUT X
150 LET X = X +3442
160 PRINT "FURTHEST RECESSION FROM EARTH";
170 INPUT Y
180 LET Y = Y +3442 'A
190 LET A = 0C+Y)/ 2 'C E2)
200 LET E=CY-X)/CY+X)
202 IF E <1 THEN 210
204 PRINT "ECCENTRICITY OF SELECTED ORBIT I S"E
206 PRINT "REDUCE ECCEN TRI CI TY BELOW E= 1"
208 GO TO 120
210 LET L = A*C 1-Et 2) "C

220 LET B = A*SGR(L/A) 'C E5)
230 LET P = 2*3. 141 59265*SORC At 3/62747) C E6)
240 LET VC 2)= SAW 62747/Y )*SORC 1-E)
250 LET VC 1) = SOW 62747/X )*SORC 1+E)
260 PRINT
270 PRINT
280 PRINT "CONSTANT PARAMETERS"
290 PRINT "
300 PRINT
310 PRINT "SEMI MAJOR AXIS I S"A
320 PRINT "SEMI MINOR AXIS I S"B
330 PRINT "SEMI LATUS RECTUM I S"L
340 PRIN T"SEMI FO CAL LENGTH I S"A*E
350 PRI N T"ECCEN TRI CI TY I S"E
360 PRINT "INERTIAL PERIOD IS" P/60
370 PRINT "PERIGEE VELOCITY IS" VC 1)*3600
330 PRINT "APOGEE VELOCITY IS" VC 2)*3600
390 PRINT
00 PRINT
410 PRINT "VARIABLE PARAMETERS"
420 PRINT " SI

430 PRINT
432 PRINT "ELAPSED TIME ", "RADI US ANGLE", "RADI US V", "VELO CI TY"
433 PFIN T "- - - - - -- " SO, IS DI

435 PRINT
440 LET N z IN TCP/ 60)
450 FOR M = 0 TO N STEP 5 'SEARCH LOOP
455 LET S=0
460 LET 0 = 2*3. 14159265 OVER
470 LET U = 0 'UNDER
480 LET Z = CO+U)/ 2 'TRIAL AN GL E
490 LET TC 1) = Lt 2*SORC A*62747)/ C 60*B*62747) C E1 5)
500 LET TC 2) = E*SINCZ)/CCE*2-1)*C 1+E*COSCZ))) 'C E1 5)
510 LET TC 3) = 2/ SORC 1-Et 23* 3 ' ( E I S )

13
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ELORB C CONTINUED)

520 LET TC 4) = ATNC SARC 1-Et 2)*TANCZ/ 2))
525 LET S=S+1
530 LET T = TC 1)*CTC2)+C TC 3)*TC 4)))
532 IF Z <= 3- 1 4159265 THEN 540

'C EIS)

'C EIS)

535 LET T= T+2*3. 141 59265*SCIRC A* 3/62747)/60
540 IF ABSC T-M) < 001 THEN 600 'EXIT
545 I F S= 1 5 TH EN 600
550 IF T> M THEN 580
560 LET U = Z 'NEWUNDER
570 GO TO 480
530 LET 0 = Z 'NEW OVER
590 GOTO 480
600 LET R=L/C 1+E*C0 S(Z) )
610 LET V = SAR ( C 2*A*62747-R*62747)/( A*R) ) 'VEL
620_ PRINT ,M, Z*180/ 3.1 41 59265, R, V*3600
630 NEXT M 'END LOOP
700 END



II. RENDEZVOUS

REF: CHASE

The rendezvous problem has been simplified to the minimum necessary to
illustrate problems of pursuit. Essentially different orbits have different velo-
cities, and movement between them requires careful calculation if interception
is the goal. The following figures illustrate the lead problem and its theoretical
solution.

Descent
Orbit

k

Chase
Ship (2)

Chase Ship (1)

Target Shi

Error

Figure 1.

arget
Ship

(1)

If the descent i s from a co-radial position, the chase ship will be behind
the target due to the difference in velocities and times between the descent
orbit and the target orbit.



Chase Ship (1)

Figure 2.

Lead Interval
(Window)

The chase ship initiates its maneuvers froi. a calculated lead interval
based on co-solving the three orbits for elapsed time and average velocities.

The descent orbit is interesting in its velocity changes. Initially, the
chase ship sheds velocity as the elliptic orbit, with its apogee at the chase
ship orbit, has a lower energy level at that point. As the ship descends with
the force of gravity to its perigee at the target orbit, its velocity increases
to the necessary energy level to "crack the whip" at perigee. So once again,
velocity must be reduced. In essence, velocity is twice reduced, and in
nearly the same amounts, to enter a faster orbit from a slower orbit.

When the program is initiated the original ship orbits are randomized within
certain bounds before being presented to the student. A Firing Table is generated
which presents all the necessary navigational and maneuvering data for a ren-
dezvous. If the student wishes to track the rendezvous, data is presented in
intervals of the student's choice. The search program from ELORB is incorporated
into the descent orbit computations and certain other data is computed from this
to show the following:

-9-



1. Elapsed time in minutes

2. Relative distance between ships in nautical miles

3. Relative angle between the ships (in degrees)

4. Relative velocity between the ships in nautical miles per hour

5. Time in minutes until rendezvous

One of the objectives of this program is for the student to become familiar
enough with the program - physics and mathematics to reverse the positions
of the two ships.

Suppose two ships are in differing circular orbits and a rendezvous is
desired. Suppose the target ship is in orbit of radius r2 and the chase ship
is in orbit of radius ri and further, more, the chase ship is displaced L radians
from the target and is in the larger (and slower) orbit. The chase ship must
now establish a transfer orbit with its apogee on the chase ship original orbit
and the perigee on the target ship's orbit.

To describe the transfer orbit we have

A = rl (E 1)
Transfer
Orbit P = r2 (E2)

e = A P/A -F P (E3)

S = A + P/2

Figure 3.

The velocity of the transfer orbit at apogee is

va = IGm (1 e)
rl

Hence, the amount of velocity to be lost by retrofire is the difference
between the velocity of the chase ship's orbit and (E4).

xi = \IGm
rl

pm(1 - e)
rl

(E4)

(E 5)



The time to perigee in the transfer orbit is half the period of the new orbit
Or

t =;;\173---
1

Gm

At perigee the chase ship has a velocity higher than its tangential circular
orbit and must again reduce velocity to match the target orbit.

x2 =

(E6)

jGm(1 +e) -V Gm (E7)
r

2
r

2

If, for the purposes of simplicity, only the transfer time is considered, the
chase ship must fire its motors precisely t1 seconds before the target ship
reaches the anticipated perigee rendezvous.

Since the target ship travels 2 radians in

\It = 21i r23 seconds, (E8)
Gm

then its angular velocity may be considered

v4 1

\ir23

Gm

rad/sec. (E9)

sr. 7,, 7,

Hence, it must travel wt radians to rendezvous

wt = (E6)(E9) = VS3 (E10)
r3

The chase ship must be radians from the perigee rendezvous so the
chase ship's lead at time of firing must be

w = j radians. >)a3
T23

The relative angular velocity of the ships is

v = 1 1 rad/sec. (E12)

r23
Gm

r13
Gm



The amount of delay necessary for the relative ship velocities to change the
relative ship angle to the proper "window" is found from the two possible
cases in Figure 4.

Chase ship

Case I

Target
ship

Figure 4.

Chase ship

Window

Target
ship

Case II

In Case I the target ship is outside the window and

t2 = (2 - w2 w)/v

In Case II the target ship is inside the window and

t2 (2 V - w2) + (21r - w /v.

The argument for a rendezvous with the chase ship occupying the inner
position is similar.

-12-
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CHASE 03/18/70 09:35

FI RING TABLE

CHASE SHIP ANGLE I S 0
CHASE SHIP RADIUS I S 499 3.67
TARGET SHIP ANGLE I S 254.557
TARGET SHIP RADI US I S 4088.47

WINDOW ANGLE IS 30.7019
TIME TO WINDOW I S 87. 5434
REDUCE VELOCITY BY 652. 627
DESCENT TIME I S 63.9645
REDUCE VELO CI TY BY 68 6.131

DO YOU WI SH TO TRACK THE SHIPS? YES
TRACKING INTERVAL? 10

ELAPSED RELATI VE
TIME ANGLE

MP 411.

0 105. 4143
10 96.9051
20 88 3676
30 79 8 3

TRACKING DATA

RELATI VE
DI STANCE

7247. 42
6823. 6
6363. 1
58 68. 77

RELATI VE
VELO CI TY

1342.1
1342. 1
1342. 1
1342 1

TIME TO
RENDEZVOUS

151.508
141.508
131. 508
121 50840 71.2924 5343.75 1342. 1 111.50850 62. 7 549 4791 56 1342.1 101. 50860 54. 2173 4216.25 1342. 1 91.50870 45. 679 7 3622. 66 1342.1 81.50880 37.1422 3017.08 1342. 1 71.508

8 7. 5434 30. 7019 2557.88 1342. 1 63.9 645

EXECUTE INI TI AL RETROFIRE

9 2. 5434 26.888 2279.87 19 58 61 58 9 6459 7. 5434 23.1179 199 2. 76 18 52. 1 4 53.9 645102. 543 19 5237 1707.75 1679.49 48.9 645107. 543 16. 149 2 1430.23 1448 . 53 43.9 645112. 543 13. 08 23 1168.427 1169 55 38 645117. 543 10. 367 9 27 9 4 8 56. 572 33.9645122. 543 7.95924 709 123 528. 478 28.9 645127 543 5.9 4703 520.3I5 203.014 23.9 645132. 543 4. 28 638 362.216 98 1257 28 9645137. 543 2 889 41 232. 557 353. 32 13.96451 42. 543 I. 7561 133. 147 545. 032 8 9 64521 47. 543 0 75464 54. 5755 658 103 3.9 6452

EXECUTE FINAL kETROFI RE

151. 5023 2. 19 522 E-2 1.56645 2. 14577 E- 4 5.08 502 E- 7

TIME: 1.651 SEC
HEADY

20
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CH A SE

100 RANDOMIZE
105 LET J = 180/3.14159265
110 LET RC I) = RND*1000+4000
120 LET RC c:) = RND*1000+4000
130 LET WC 1) = RND*6.28 31853
140 LET WC 2) = RND*6.28 318 53
150 LET VC 1) = SOW 62747/RC 1) )
160 LET V(2) = SUR( 62747/RC 2) )
17C IF RC I) > RC 2) THEN 200
180 IF RC 1) < RC 2) THEN 100
190 COTO 100
200 LET A = I)

210 LET P = RC 2)

220 LET E = CA-P)/C A+P)
230-LET = CA+P)/
240 LET TC I) = 3. 141 59265*SURC St3/ 62747)
250 LET W = 3. 14159265*SQR( St 3/RC 2) * 3) - 3. 1 41 59265

260 LET VC 3)= 1/ SOW RC I)? 3/62747)
270 LET VC 4).= I/ SUR( F<( 2)*3/62747)
280 LET V =' VC 4)-VC 3)
290 LET Z = 6.2831853-WC I )
300 LET WC 1) = 0
310 LET IV( 2) = WC 2)+Z
320 IF W(2) < 6.2831853 THEN 340
330 LET W(2) = W(2)-6.2831853
340 IF WC 2) < (6.28318530-W) THEN 380
350 LET Y = (6.28318530-W(2))+(6.28318530-W)
360 LET T(2) = Y/V
365 IF T(2)/60> 100 THEN 100
370 GO TO 400
380 LET Y = (6. 28318 530-WC 2) ) -W
390 GO TO 360
400 LET XC I) = SUR( 62747/A)- SOW 62747 I-E)/ A)

410 LET X(2) = SUR( 62747*C I+E)/P) - SOW 62747/P)
420 PRINT so "FI RING TABLE"
430 PRINT "

440 PRINT
450 PRINT "CHASE SHIP ANGLE I S"WC I)*180/ 3. 141 59265

460 PRINT "CHASE SHIP RADI US I S"RC 1)

470 PRINT "TARGET SHIP ANGLE I S"WC 2)*I80/ 3.14159265
180 PRINT "TARGET SHIP RADIUS I S"RC 2)

.0 PRINT
500 PRINT "WINDOW ANGLE IS" W*180/3.14159265
510 PRINT "TIME TO WINDOW I S"TC 2)/60
520 PRINT "REDUCE VELD CI TY BY"X( I )*3600
530 PRINT "DESCENT TIME I 8"TC 1)/60
540 PRINT "REDUCE VELD CI TY BY"XC 2)*3600
550 PRINT
560 PRINT "
570 PRINT

21

'ORIGINATE

'GATE

'APO GEE
'PERI GEE
'ECCENT
'SEMI MAJ
'COAST TIME
'WINDOW

'REL
'INI TIALIZE
'0 RBI TS

'TARGET ADV.
'TIME TO FIRE

'EXIT
'TARGET ADV

'EXCESS
'VELOCI TIES



CHASE ( CON TIN UED)

530 PRINT "DO YOU WI SH TO TRACK THE SHIPS";
590 INPUT AS
600 I F A$= "YES "THEN 620
610 STOP
620 PRINT "TRACKING INTERVAL";
630 INPUT J
640 PRINT
650 PRIN T
660 PRINT "TRACKING DATA"
670 PRINT a.,"
680 PRINT
690 PRINT "ELAPSED", "RELATI VE" "RELATI VE", "KELATI VE", "TIME TO"
700 PRINT "TIME", "AN GL E", "DI STAN CE", "VELO CI TY", "REN DEZ VO US"
710 PRINT "----", " et, .. II, et tI

720 FOR T = 0 TO INT( T( 2)/ 60) STEP J
730 PRINT T,
740 LET W( 3) = T*60*V( +W( 1)
750 LET W( 4)=T*60*V( 4) +W( 2)
760 LET M = ABS( W( 3) W( )
770 IF M < 3. 1 4 1 59 26 5 THEN 790
780 LET M = ABS( M 6. 28 318 530)
790 PRINT M*180/ 3. 1 41 59 265,
800 LET D = SEM( At 2+Pt 2 2*A*P*C0 S(M) )
810 PRINT D,
820 LET V( 5) = ABS( V( 1)V( 2) )
830 PRINT V( 5)*3600,
840 PRINT T+( T(1)+T(2))/60
850 IF T = T( 2)/ 60 THEN 890
860 NEXT T
870 LET T = T( 2)/ 60
880 COTO 730
890 PRINT
900 PRINT "EXECUTE IN I TI AL RETRO FI RE"
910 PRINT
920 LET L = S*( 1Et 2)
930 LET B = S*SOR(L/ S)
940 LET W( 1) = W( 3)
950 LET WC 2) = W( 4)
960 IF W(1) < 6.28318 53 THEN 990
970 LET W( 1) = W( 1) 6. 28 318 530
980 GO TO 960
990 IF W(2)< 6.28318 53 THEN 1015
1000 LET W( 2) = W( 2) 6.28 318 530
1010 GO TO 990
10 1 5LET J=5

''1020 FOR T=(J+T( 1)/60) TO T( 1)/30 STEP J
1022 LETO= 0+ 1
1030 LET K = 0
1040 LET 0 = 6. 28318 53
1050 LET U = 0

22
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CHASE (CONTINUED)

1060 LET Z = (0 +U)/2
1070 LET NCI) = L*2*SAR(S*62747)/(60*B*62747)
1080 LET NC 2)=E*SIN(Z)/C(E*2-1)*(1+E*COSCZ)))
109 0 LET N( 3) = 2/SARC 1-Et 2)13
1100 LET NC = ATN( SQR( 1-E* 2)*TANCZ/2) )
1110 LET N = 1)*N( 2)+N( 1)*N( 3)*NC 4)
1113 IF Z<=3.1 41 59 265 THEN1120
1115 LET N=N+T( 1)/30
1120 LET K = K+1
1130 IF ABS(N-T) <01 THEN 119 5
1140 IF K=15 THEN 119 5
1150 IF N> T THEN 118 0
1160 LET U = Z
1170 GeT0 1060
118 0 LET 0 = Z
1190 -GOT O 10 60
1195 IF T<TC 1)/30 THEN 1200
119 7 LET T( 3)=T( 1)/60+TC 2)/60
1198 GO TO 120 5
1200 LET T( 3)=U*J+T( 2)/60
1205 PRINT T( 3),
1210 LET WC 2) = J*60*V( 4)+WC 2)
1220 LET W=Z- 3.14159 265 +W(1)
1230 LET M=ABS(W-WC 2) )
128 0 PRINT M*18 0/3.1 4159 265,
129 0 LET R = L/C 1+E*COS(Z))
1300 LET D=SGiR( IR* 2+P*2-2*R*P*COSCM))
1310 PRINT D,
1315 IF T<TC 1)/30 THEN 1320
1316 LET VC 1)= SOK( C 2*S*62747-R*62747)/C S*R))-X( 2)
1317 GO TO 1 330
1320 LET VC 1) = SORCC 2*S*62747-R*62747)/C S*R) )
1330 LET VC 5) = ABSC VC 1)-VC 2))
1340 PRINT VC 5)*3600,
1350 LET TC 4)=T( 1)/60 +T( 2)/60 -T( 3)
1351 PRINT T( 4)
1360 IF T= T( 1)/30 THEN 1420
1370 NEXT T
138 0 PRINT
139 0 PRINT "EXECUTE FINAL RETROFIRE"
1400 PRINT
1405 LET T=TC 1)/30
1406 LET J=T( 4)
1407 LET R=P
1410 GO TO 1022
1420 STOP
1430 END



ORBITAL TRANSFER

REF: )(FR

The problem of "where are we?" besets every pilot of a spaceship once
he has fired his ship's motors. The problem in its most simple form is finding
t he new orbit attained from the old orbit by introducing an energy vector re-
presented in this program by the coplanar thrust of the motors.

The program despite its complexity does have simple inputs and outputs.
The inputs for the old orbit are in response to interrogation.

1. Eccentricity of the old orbit.

2. Length of the Semi-Latus Rectum in nautical miles.

3. Position of the ship in degrees from perigee axis.

The program then invites the student to fire the motors which he does by answering
further interrogation.

1. Angle at which motors are fired (in degrees).

2. Length of time motors are to be fired (in seconds).

3. Desired interval between interim calculations (in seconds).

The output from the program is quite prompt.

1. Eccentricity of new orbit.

2. Length of new Semi-Latus Rectum in nautical miles.

3. Length of new radius vector in nautical miles.

4. New radius vector angle with respect to the new perigee axis.

5. Direction and amount (in degrees) of orbital rotation as measured
between the two perigee axes.

Obviously, this program can be sequentially staged to move the ship about quite
freely. Attempting to move under power from one polar plot to another is sub-
stantially challenging, particularly if velocities are to be matched. Repeated use
of this program demonstrates that axial shifts are much larger for low eccentricity
orbits than for ones of higher eccentricity given the same amount of disturbance
through added thrust.



The general factors that must be taken into consideration are presented
in crude and exaggerated form in the following figures.
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Figure 1.

L

1 + eocos 90

The original orbital
equation in polar form.

Figure 2.

Further detail at Po
showing inclination
and burn angles.

P (r 9 )Po o

Figure 3.

Rotation of orbit mea-
sured through Perigees.



An apology is extended for the profusion of factors in Figures 1 through 3,
but each has its particular place in orbital navigation. Before proceeding to
a fuller discussion of the program a small development of the use of the
inclination angle is in order. Certain liberties have been taken in its deri-
vation which do not appear in the mathematical text and could be puzzling to
t he serious student.

By assuming that each moment the motors fire is their last moment, and
consequently at each moment the ship is in a calculable orbit, these inter-
mediate orbits may be continuously calculated. The program uses an interval
of 5 seconds but is adjustable to any figure one may desire. Obviously the
smaller the interval the more accurate the calculations become. In an orbit
of thousands if not tens of thousands of seconds in period an interval of 5
seconds closely approximates the actual value. Assuming the 5 second (or
less) interval is a sufficiently close approximation of the actual value, the
calculations for instantaneous angle of orbital inclination become rather straight-
forward.

Figure 4.

Angle of Inclination

Since we are substituting a small t for dt the angle swept out by the radius
vector for small t is arbitrarily held to approximate that angle swept out for dt,
i.e. , d(9 + 9*). The radius vector, r, increases by dr across angle d(9 + 9*)
and the differential arc length approximated by its tangent has length rd(9 + 9*).
Assuming d9 then the "new" radius vector crosses the tangent to the curve at
right angles. By taking the angle vertical to 0 the construction becomes clearer
as noted on the following page.



Tan % = dr from use of
rd (A + 9*)

vertical angles

Nevi OrbA-o.1
r,,th

(NOTE: Error of small t in place of dt is proportional to the difference between
the arc length of the orbital path and the length of the equivalent tangent seg-
ment.)

If r = L then dr = e sin(8 + 9*) by the
1 + e cos (A + 9*) rd (A + 9*) 1 + e cos (A + 9*)

use of the simple differential formulas. Since the angle of inclination describes
the orbit all that remains is the task of fitting all the data and formulas together.

Since the companion program was to be as realistic as possible, an actual
spaceship was modeled within the program. The ship has a certain mass, thrust,
and fuel usage compatible with current chemically propelled rockets. These ship
parameters can be varied for any number of reasons.

The ship is at Po: (ro, 90) in an originating orbit with known constants of:

ro = Lo (El)
1 + eocos 90

At this point the ship has a velocity, v0, determined by

vo 2 = Gm (2 (1 - eo2))

ro Lo

where Gm is Earth gravitational constant.

-16-
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Furthermore, the angle made by the tangent to the orbit and the perpendicular
to the radius vector at Po is the angle of inclination and is

Tan 00 = eo sin 90
1 + eo cos 90

(3)

The ship is rotated to the burn angle (measured from the perpendicular to the
radius vector to the axis through motors) and the motors are fired. At the end
of (m) seconds the ship has added perpendicular and radial distance vectors due
to this thrust. These distance vectors are:

x1 = -21-m2 E cos z

and

(E4)

yi = Zm2 sin z) (ES)

The supporting equations for these vectors are:

go = Gm (E6)
72-0

.=. Tg (E7)
(w - m k/2)

h = mvo sin 00 + Zm2 (N sin z) (E8)

gh = Gm/(r + h)2 (E9)

and

where

(go + gh)/2

t is the ship thrust in pounds;

w is the ship weight in pounds;

k is the pounds of fuel burned per second;

go is gravitational acceleration at Po ;

-17-
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and

gh is gravitational acceleration at height h;

if is mean gravitational acceleration during time m;

-a- is mean acceleration from ship during time m.

To keep these equations at a secondary school level of complexity certain
simplifying assumptions have been made. Evidently 7 and a- are not true
means but first approximations from their respective infinite series. Also,
for m, a time interval of m 5 should be used. The results of (E3) are
based on the tangent to a curve closely approximating the curve for small
distances; i.e. , the differential arc length is extended..

At the end of m seconds of firing the ship is in a new orbit which may be
computed in terms of the old orbital parameters.

For the point of entry P(r, 9) on the new orbit, r is computed as

r2 = (x1 + x2)2 + (ro + yi + y2)2

x2 = mvo cos 00

y2 = mvo sin a

The radius vector has now moved forward angle (w) from its old position.
Further orbital relationships are:

9 = w + 90

Tan w = (x1 + x2)/r

m2v2 = (x1 + x2)2 + + y2)2

Tan = (Y1 4- Y2)/(x l + x2)

The original reference line which was the perigee axis of the old orbit
has rotated to reflect the perigee axis of the new orbit; i.e. , the ship's
reference line has rotated through an angle of 9*.

The new orbit through point P is defined by:

(Ell)

(E12)

(E13)

(E 14)

(E15)

(E16)

(E17)

r = L (E18)
1 + e cos (9 + 9*)

-18- .?9



v2 = Gm ( 2 - ( 1 - e2) )
r L

Tan 0 = e sin (9 + 9*)

(E19)

1 + e cos (9 + 9*) (E20)

The simultaneous solution of (E18-20), a tedious exercise in analytic
geometry, yields:

where

e2 - 1 = rv2 cos 2 0 (rv2 2Gm)
Gm2

L = .7 2r'-v cos 2 0
Gm

sin 9* = -c sin 9 + cos 9 47-7

(E21)

(E22)

(E23)

c = (L - r)/er = cos (9 + 9*) (E24)

A sufficient condition for -1 c 1 is that P 5 r A and of the two
solutions to (E23) the sum is used in the first two quadrants while the
difference is used in the last two quadrants.

.3
-19-
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XER

WO PRINT "THIS PROGRAM IS DIRECTLY KEYED T3 THE TOPIC OUTLINE"
110 PRINT "'ORBITAL TRANSFER' AND THE NUMBERS IN THE kEM COLUMN"
120 PRINT "OF THE LI ST OF THIS PROGRAM REFER TO THE EQUATION NUmBERS"
130 PRINT"IN THE TEXT."
150 PRINT
160 LET T = 75000 'THRUST
170 LET G = 62747 'GM

180 LET IN = 50000 '4.EI GHT
190 LET K = 100 'FUEL USE
200 LET I = 180/ 3.14159265 'kAD /DEG
210 LET J = 3. 141 59265/180 'DEG/RAD
220 PRINT "ECCENTRI CI TY";
230 INPUT E
240 PRINT "SEMILk"; 'Nm
250 INPUT L
260 PRINT "POSITION ANGLE"; 'DEG
270 INPUT P
030 LE1 P = J *
290 PRINT "BURN ANGLE"; 'DEC
300 INPUT Z
310 L E TL = J *
320 PRINT "BURN TIME"; 'SEC
330 INPUT TC 1)
340 PRINT "INCrtF.MENT"; 'SEC
350 INPUT M
360 FOR N = Ni 13 IC 1) STEP M
370 LET h = L/( I+ F.*Ca SCF )) '(El)
390 LET V = SjRCL) *SLIM (2/10-(C I-E? 2)/L)) '(E2)
410 LET U = A1N(E*5IN(F)/C1+E*COSCP))) '(F3)
430 LET GC I) = C/ R? 2
450 LEI A = T*LC I )/( IA-m*K/ 2) '(E7)
470 LEI H = M*1.*SIN(L1)+.5*M?2*A*SINCZ) '(E-5)
4Lio LE1 6(2) = 0/(k+H)?2
510 LET G(3) = (G( 1) 4-((2))/ 2 ICE10)
520 LE1 A = 1*CC 3)/( L..-m*K/ 2) '(E7)
540 LET XC 1) = 5*M? 2*A*COSCL) I(E4)
560 LEI Y( I) = . 5*M? 2*A*SIN(Z) '(F5)
580 LET ? 2) = pit*kke,c)5_,(u) EI 2)
600 LE1 Y(2) = M*V*SIN(U) E1 3)
620 LE1 PC I) = ATNCCX(1)+X(2))/k) '( El 5)
640 LE1 n = SLitN( (X( 1)+X(2))? 2+(k+Y( 1)+Y(2))? '( El 1)
660 LET P = P(1 ) +P 'C El 4)
680 LEI 5 = SuRC (..t( I ) +AC 2) )? 2.+CY( 1)+y(2.»? 23 '(FI 6)
690 LET V =
710 LET U = ATNNY( 1)+y(2))/cx(1)+X(2))) E1 7)
730 LF1 E = SUR( C VI 2*CO U) ? 2*( }Or V? 2-24 G)+G? 2)/C.:? 2)
750 LEI L = (1-.4,1)*C3 U) )? 2)/G '( F22)
770 LE I L = b.)/ ( E-4c1-) I( FP4)
760 IF P < 6. 2K 31.-i 530 THEN 1500
790 LET = f-6.2331(1530

III. A
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XFR

800
810
811
820
830
840
841
850

( CONTINUED)

I F P > 3. 1 41 59 625 THEN 8 40
LET S = (-C*SIN(P)+COS(P)*SG/R( 1-C? 2)
LET S= 2*S
LET S = ATN( S/ SCTh( 1- S? 2) )
GO TO 9 30
LET S = (-C*SIN(P)-COS(P)*SCM( 1-C? 2)
LET S= 2*S
LET S = ATN( S/SOk( 1-S? 2) )

)/2

)/2

860 IF Y(1) < 0 THEN 890
870 LET P = P+S
875 LET SC 1) = SC 1) - S

880 GO TO 970
1390 LET P = P- S
895 LET S( 1) = S( 1)+S
900 LET S = ATN( D( 2)/ SOk( 1-D( 2) ? 2) ) 'AXIAL SHIFT
9 10 G0 TO 9 70
920
930 IF Y(1) < 0 THEN 960
940 LET P = P- S
945 LET S( 1) = 5( 1) + S

950 GO TO 970
960 LET P = P+S
965 LET 5( 1) = S( 1)-S
970 LET IN = 6+ -M*1(/ 2
980 IF P < 6.28318530 THEN 1000
1000 LET W = 1.4-M*K/ 2
1020 NEXT N
1080 PRINT
1090 PRINT "ECCEN TM CI TY ", "SEMI LR", "RAD V", "F<AD ANGLE ", "AXI AL
1100 PRINT E,L, R,P*I, S( 1)*I
1500 END

SHI FT"



RUN

XFR 03/ 18/70 09:32

1HIS PROGRAM I S DIRECTLY KEYED TO THE TOPIC OUTLINE
'0 RBI TAL TRANSFER' AND THE NUMBERS IN THE kEM COLUMN
OF THE LIST OF THIS PROGRAM REFER TO THE EQUATION NUMBERS
IN THE TEX T

ECCEN TRI CI TY? 0 1
SEMILR? 4800
POSITION ANGLE? 90
BURN AN GL E? 30
BURN TIME? 20
INCREMENT? 5

ECCEN TRI CITY
7. 49 1 69 E -3

SEMI LR
4896.69

TIME: 0.498 SEC
READY

RAD V
4924. 29

-III. C-

33

RAD AN
184. 512

AXIAL SHIFT
-9 3. 667


